Number of girls in a family | 2 | 1 | 0 |
Number of families | 475 | 814 | 211 |
Compute the probability of a family, chosen at random, having
(i) 2 girls (ii) 1 girl (iii) No girl
Also check whether the sum of these probabilities is 1.
Solution:
Total numbers of families = 1500
(i) Numbers of families having 2 girls = 475
Probability = Numbers of families having 2 girls/Total numbers of families
= 475/1500 = 19/60
(ii) Numbers of families having 1 girl = 814
Probability = Numbers of families having 1 girl/Total numbers of families
= 814/1500 = 407/750
(iii) Numbers of families having 0 girls = 211
Probability = Numbers of families having 0 girls/Total numbers of families
= 211/1500
Sum of the probability = (19/60)+(407/750)+(211/1500)
= (475+814+211)/1500
= 1500/1500 = 1
Yes, the sum of these probabilities is 1.
Hello,
May I help you ?