Lines And Angles | Exercise 6.1 | NCERT Solution Maths 9 | Chapter 6
Access Answers of Maths NCERT Class 9 Maths Chapter 6 – Lines And Angles
Class 9 Maths Chapter 6 Exercise: 6.1 (Page No: 96)
Exercise: 6.1 (Page No: 96)
1. In Fig. 6.13, lines AB and CD intersect at O. If ∠AOC +∠BOE = 70° and ∠BOD = 40°, find ∠BOE and reflex ∠COE.
Solution:
From the diagram, we have
(∠AOC +∠BOE +∠COE) and (∠COE +∠BOD +∠BOE) forms a straight line.
So, ∠AOC+∠BOE +∠COE = ∠COE +∠BOD+∠BOE = 180°
Now, by putting the values of ∠AOC + ∠BOE = 70° and ∠BOD = 40° we get
∠COE = 110° and ∠BOE = 30°
So, reflex ∠COE = 360o – 110o = 250o
2. In Fig. 6.14, lines XY and MN intersect at O. If ∠POY = 90° and a : b = 2 : 3, find c.
Solution:
We know that the sum of linear pair are always equal to 180°
So,
∠POY +a +b = 180°
Putting the value of ∠POY = 90° (as given in the question) we get,
a+b = 90°
Now, it is given that a : b = 2 : 3 so,
Let a be 2x and b be 3x
∴ 2x+3x = 90°
Solving this we get
5x = 90°
So, x = 18°
∴ a = 2×18° = 36°
Similarly, b can be calculated and the value will be
b = 3×18° = 54°
From the diagram, b+c also forms a straight angle so,
b+c = 180°
c+54° = 180°
∴ c = 126°
3. In Fig. 6.15, ∠PQR = ∠PRQ, then prove that ∠PQS = ∠PRT.
Solution:
Since ST is a straight line so,
∠PQS+∠PQR = 180° (linear pair) and
∠PRT+∠PRQ = 180° (linear pair)
Now, ∠PQS + ∠PQR = ∠PRT+∠PRQ = 180°
Since ∠PQR =∠PRQ (as given in the question)
∠PQS = ∠PRT. (Hence proved).
4. In Fig. 6.16, if x+y = w+z, then prove that AOB is a line.
Solution:
For proving AOB is a straight line, we will have to prove x+y is a linear pair
i.e. x+y = 180°
We know that the angles around a point are 360° so,
x+y+w+z = 360°
In the question, it is given that,
x+y = w+z
So, (x+y)+(x+y) = 360°
2(x+y) = 360°
∴ (x+y) = 180° (Hence proved).
5. In Fig. 6.17, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that ∠ROS = ½ (∠QOS – ∠POS).
Solution:
In the question, it is given that (OR ⊥ PQ) and ∠POQ = 180°
So, ∠POS+∠ROS+∠ROQ = 180°
Now, ∠POS+∠ROS = 180°- 90° (Since ∠POR = ∠ROQ = 90°)
∴ ∠POS + ∠ROS = 90°
Now, ∠QOS = ∠ROQ+∠ROS
It is given that ∠ROQ = 90°,
∴ ∠QOS = 90° +∠ROS
Or, ∠QOS – ∠ROS = 90°
As ∠POS + ∠ROS = 90° and ∠QOS – ∠ROS = 90°, we get
∠POS + ∠ROS = ∠QOS – ∠ROS
2 ∠ROS + ∠POS = ∠QOS
Or, ∠ROS = ½ (∠QOS – ∠POS) (Hence proved).
6. It is given that ∠XYZ = 64° and XY is produced to point P. Draw a figure from the given information. If ray YQ bisects ∠ZYP, find ∠XYQ and reflex ∠QYP.
Solution:
Here, XP is a straight line
So, ∠XYZ +∠ZYP = 180°
Putting the value of ∠XYZ = 64° we get,
64° +∠ZYP = 180°
∴ ∠ZYP = 116°
From the diagram, we also know that ∠ZYP = ∠ZYQ + ∠QYP
Now, as YQ bisects ∠ZYP,
∠ZYQ = ∠QYP
Or, ∠ZYP = 2∠ZYQ
∴ ∠ZYQ = ∠QYP = 58°
Again, ∠XYQ = ∠XYZ + ∠ZYQ
By putting the value of ∠XYZ = 64° and ∠ZYQ = 58° we get.
∠XYQ = 64°+58°
Or, ∠XYQ = 122°
Now, reflex ∠QYP = 180°+XYQ
We computed that the value of ∠XYQ = 122°.
So,
∠QYP = 180°+122°
∴ ∠QYP = 302°
Class 9 Maths NCERT Solutions Chapter 6 Exercises |
---|
Exercise 6.1 – 6 Questions (5 short answers, 1 long answer) |
Exercise 6.2 – 6 Questions (3 short answers, 3 long answers) |
Exercise 6.3 – 6 Questions (5 short answers, 1 long answer) |
Post a Comment