Solution:
Consider the diagram
Here AD = CE
We know, any exterior angle of a triangle is equal to the sum of interior opposite angles.
So,
∠DAE = ∠ABC+∠AEC (in ΔBAE) ——————-(i)
DE subtends ∠DOE at the centre and ∠DAE in the remaining part of the circle.
So,
∠DAE = (½)∠DOE ——————-(ii)
Similarly, ∠AEC = (½)∠AOC ——————-(iii)
Now, from equation (i), (ii), and (iii) we get,
(½)∠DOE = ∠ABC+(½)∠AOC
Or, ∠ABC = (½)[∠DOE-∠AOC] (hence proved).
Hello,
May I help you ?