Solution:
Consider the ΔPQR. ∠PRS is the exterior angle and ∠QPR and ∠PQR are interior angles.
So, ∠PRS = ∠QPR+∠PQR (According to triangle property)
Or, ∠PRS -∠PQR = ∠QPR ———–(i)
Now, consider the ΔQRT,
∠TRS = ∠TQR+∠QTR
Or, ∠QTR = ∠TRS-∠TQR
We know that QT and RT bisect ∠PQR and ∠PRS respectively.
So, ∠PRS = 2 ∠TRS and ∠PQR = 2∠TQR
Now, ∠QTR = ½ ∠PRS – ½∠PQR
Or, ∠QTR = ½ (∠PRS -∠PQR)
From (i) we know that ∠PRS -∠PQR = ∠QPR
So, ∠QTR = ½ ∠QPR (hence proved).
Hello,
May I help you ?