In Fig. 6.43, if PQ ⊥ PS, PQ || SR, ∠SQR = 28° and ∠QRT = 65°, then find the values of x and y.

Reliable Education Group
0











Solution:

x +∠SQR = ∠QRT (As they are alternate angles since QR is transversal)

So, x+28° = 65°

∴ x = 37°

It is also known that alternate interior angles are same and so,

∠QSR = x = 37°

Also, Now,

∠QRS +∠QRT = 180° (As they are a Linear pair)

Or, ∠QRS+65° = 180°

So, ∠QRS = 115°

Using the angle sum property in Δ SPQ,

∠SPQ + x + y = 180°

Putting their respective values, we get,

90°+37° + y = 180°

y = 1800 – 1270 = 530

Hence, y = 53°

Post a Comment

0Comments

Hello,
May I help you ?

Post a Comment (0)

#buttons=(Ok, Go it!) #days=(20)

Our website uses cookies to enhance your experience. Check Now
Ok, Go it!