In Fig. 6.42, if lines PQ and RS intersect at point T, such that ∠PRT = 40°, ∠RPT = 95° and ∠TSQ = 75°, find ∠SQT.

Reliable Education Group
0

 










Solution:

Consider triangle PRT.

∠PRT +∠RPT + ∠PTR = 180°

So, ∠PTR = 45°

Now ∠PTR will be equal to ∠STQ as they are vertically opposite angles.

So, ∠PTR = ∠STQ = 45°

Again, in triangle STQ,

∠TSQ +∠PTR + ∠SQT = 180°

Solving this we get,

74° + 45° + ∠SQT = 180°

∠SQT = 60°

Post a Comment

0Comments

Hello,
May I help you ?

Post a Comment (0)

#buttons=(Ok, Go it!) #days=(20)

Our website uses cookies to enhance your experience. Check Now
Ok, Go it!