Solution:
It is given the TQR is a straight line and so, the linear pairs (i.e. ∠TQP and ∠PQR) will add up to 180°
So, ∠TQP +∠PQR = 180°
Now, putting the value of ∠TQP = 110° we get,
∠PQR = 70°
Consider the ΔPQR,
Here, the side QP is extended to S and so, ∠SPR forms the exterior angle.
Thus, ∠SPR (∠SPR = 135°) is equal to the sum of interior opposite angles. (Triangle property)
Or, ∠PQR +∠PRQ = 135°
Now, putting the value of ∠PQR = 70° we get,
∠PRQ = 135°-70°
Hence, ∠PRQ = 65°
Hello,
May I help you ?