Solution:
In the question, it is given that (OR ⊥ PQ) and ∠POQ = 180°
So, ∠POS+∠ROS+∠ROQ = 180°
Now, ∠POS+∠ROS = 180°- 90° (Since ∠POR = ∠ROQ = 90°)
∴ ∠POS + ∠ROS = 90°
Now, ∠QOS = ∠ROQ+∠ROS
It is given that ∠ROQ = 90°,
∴ ∠QOS = 90° +∠ROS
Or, ∠QOS – ∠ROS = 90°
As ∠POS + ∠ROS = 90° and ∠QOS – ∠ROS = 90°, we get
∠POS + ∠ROS = ∠QOS – ∠ROS
2 ∠ROS + ∠POS = ∠QOS
Or, ∠ROS = ½ (∠QOS – ∠POS) (Hence proved).
Hello,
May I help you ?