BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle ABC is isosceles.

Reliable Education Group
0

 


.






Solution:

It is known that BE and CF are two equal altitudes.

Now, in ΔBEC and ΔCFB,

∠BEC = ∠CFB = 90° (Same Altitudes)

BC = CB (Common side)

BE = CF (Common side)

So, ΔBEC ≅ ΔCFB by RHS congruence criterion.

Also, ∠C = ∠B (by CPCT)

Therefore, AB = AC as sides opposite to the equal angles is always equal.

Post a Comment

0Comments

Hello,
May I help you ?

Post a Comment (0)

#buttons=(Ok, Go it!) #days=(20)

Our website uses cookies to enhance your experience. Check Now
Ok, Go it!