Solution:
First, draw a line segment BE parallel to the line AD. Then, from B, draw a perpendicular on the line segment CD.
Now, it can be seen that the quadrilateral ABED is a parallelogram. So,
AB = ED = 10 m
AD = BE = 13 m
EC = 25-ED = 25-10 = 15 m
Now, consider the triangle BEC,
Its semi perimeter (s) = (13+14+15)/2 = 21 m
By using Heron’s formula,
Area of ΔBEC =
= 84 m2
We also know that the area of ΔBEC = (½)×CE×BF
84 cm2 = (½)×15×BF
BF = (168/15) cm = 11.2 cm
So, the total area of ABED will be BF×DE i.e. 11.2×10 = 112 m2
∴ Area of the field = 84+112 = 196 m2
Hello,
May I help you ?