Class 8 | NCERT Solution Maths Chapter 9 | Algebraic Expressions and Identities | Exercise 9.4
Exercise 9.4 Page No: 148
1. Multiply the binomials.
(i) (2x + 5) and (4x – 3)
(ii) (y - 8) and (3y - 4)
(iii) (2.5l – 0.5m) and (2.5l + 0.5m)
(iv) (a + 3b) and (x + 5)
(v) (2pq + 3q2) and (3pq – 2q2)
(vi) (3/4 a2 + 3b2) and 4( a2 – 2/3 b2)
Solution :
(i) (2x + 5) (4x – 3)
= 2x x 4x – 2x x 3 + 5 x 4x – 5 x 3
= 8x² – 6x + 20x -15
= 8x² + 14x -15
ii) (y - 8) (3y - 4)
= yx 3y - 4y - 8 x 3y + 32
= 3y 2 - 4y - 24y + 32
= 3y 2 – 28y + 32
(iii) (2.5l – 0.5m)(2.5l + 0.5m)
= 2.5l x 2.5 l + 2.5l x 0.5m – 0.5m x 2.5l – 0.5m x 0.5m
= 6.25l 2 + 1.25 lm – 1.25 lm – 0.25 m 2
= 6.25l 2 – 0.25 m 2
iv) (a + 3b) (x + 5)
= ax + 5a + 3bx + 15b
c) (2pq + 3q 2 ) (3pq - 2q 2 )
= 2pq x 3pq – 2pq x 2q2 + 3q2 x 3pq – 3q2 x 2q2
= 6p 2 q 2 – 4pq 3 + 9pq 3 – 6q 4
= 6p 2 q 2 + 5pq 3 – 6q 4
(vi) (3/4 a² + 3b² ) and 4( a² – 2/3 b² )
=(3/4 a² + 3b² ) x 4( a² – 2/3 b² )
=(3/4 a² + 3b² ) x (4a² – 8/3 b² )
=3/4 a² x (4a² – 8/3 b² ) + 3b² x (4a² – 8/3 b² )
=3/4 a² x 4a² -3/4 a² x 8/3 b² + 3b² x 4a² – 3b² x 8/3 b²
=3a4 – 2a² b² + 12 a² b² – 8b4
= 3a4 + 10a² b² – 8b4
2. Find the product.
(i) (5 – 2x) (3 + x)
(ii) (x + 7y) (7x - y)
(iii) (a2+ b) (a + b2)
(iv) (p2 – q2) (2p + q)
Solution:
(i) (5 – 2x) (3 + x)
= 5 (3 + x) – 2x (3 + x)
=15 + 5x – 6x – 2x2
= 15 – x -2 x 2
(ii) (x + 7y) (7x - y)
= x (7x-y) + 7y (7x-y)
=7x2 – xy + 49xy – 7y2
= 7x2 – 7y2 + 48xy
iii) (a2+ b) (a + b2)
= a2 (a + b2) + b(a + b2)
= a 3 + a 2 b 2 + ab + b 3
= a 3 + b 3 + a 2 b 2 + ab
iv) (p2– q2) (2p + q)
= p2 (2p + q) – q2 (2p + q)
=2p 3 + p 2 q – 2pq 2 – q 3
= 2p 3 – q 3 + p 2 q – 2pq 2
3. Simplify.
(i) (x2– 5) (x + 5) + 25
(ii) (a 2 + 5) (b 3 + 3) + 5
(iii)(t + s2)(t2 – s)
(iv) (a + b) (c – d) + (a – b) (c + d) + 2 (ac + bd)
(v) (x + y) (2x + y) + (x + 2y) (x - y)
(vi) (x + y) (x 2 - xy + y 2 )
(vii) (1.5x - 4y) (1.5x + 4y + 3) - 4.5x + 12y
(Viii) (a + b + c) (a + b - c)
Solution :
i) (x2– 5) (x + 5) + 25
= x3 + 5x2 – 5x – 25 + 25
= x3 + 5x2 – 5x
ii) (a 2 + 5) (b 3 + 3) + 5
= a 2 b 3 + 3a 2 + 5b 3 + 15 + 5
= a 2 b 3 + 5b 3 + 3a 2 + 20
iii) (t + s2)(t2 – s)
= t (t2 – s) + s2(t2 – s)
= t3 – st + s2t2 – s3
= t3 – s3 – st + s2t2
iv) (a + b) (c – d) + (a – b) (c + d) + 2 (ac + bd)
= (a + b) (c – d) + (a – b) (c + d) + 2 (ac + bd)
=(ac – ad + bc – bd) + (ac + ad – bc – bd) + (2ac + 2bd)
= ac – ad + bc – bd + ac + ad – bc – bd + 2ac + 2bd
= 4ac
v) (x + y) (2x + y) + (x + 2y) (x - y)
= 2x2 + xy + 2xy + y2 + x2 – xy + 2xy – 2y2
= 3x2 + 4xy – y2
vi) (x + y) (x 2 - xy + y 2 )
= x 3 – x 2 y + xy 2 + x 2 y – xy 2 + y 3
= x 3 + y 3
vii) (1.5x - 4y) (1.5x + 4y + 3) - 4.5x + 12y
= 2.25x2 + 6xy + 4.5x – 6xy – 16y2 – 12y – 4.5x + 12y = 2.25x2 – 16y2
viii) (a + b + c) (a + b - c)
= a2 + ab – ac + ab + b2 – bc + ac + bc – c2
= a 2 + b 2 – c 2 + 2ab
Post a Comment