Class 8 | NCERT Solution Maths Chapter 9 | Algebraic Expressions and Identities | Exercise 9.2
Exercise 9.2 Page No: 143
1. Find the product of the following pairs of monomials.
(i) 4, 7p
(ii) – 4p, 7p
(iii) – 4p, 7pq
(iv) 4p 3 , - 3p
(v) 4p, 0
Solution:
(i) 4 , 7 p = 4 7 × p = 28p
(ii) – 4p × 7p = (-4 × 7 ) × (p × p )= -28p2
(iii) – 4p × 7pq =(-4 × 7 ) (p × pq) = -28p2q
(iv) 4p3 × – 3p = (4 × -3 ) (p3 × p ) = -12p4
(v) 4p × 0 = 0
2. Find the areas of rectangles with the following pairs of monomials as their lengths and breadths respectively.
(p, q) ; (10m, 5n) ; (20x2 , 5y2) ; (4x, 3x2) ; (3mn, 4np)
Solution:
Area of rectangle = Length x breadth. So, it is multiplication of two monomials.
The results can be written in square units.
(i) p × q = pq
(ii)10m × 5n = 50mn
(iii) 20x2 × 5y2 = 100x2y2
(iv) 4x × 3x2 = 12x3
(v) 3mn × 4np = 12mn 2 p
3. Complete the following table of products:
Solution:
4. Obtain the volume of rectangular boxes with the following length, breadth and height respectively.
(i) 5a, 3a 2 , 7a 4
(ii) 2p, 4q, 8r
(iii) xy, 2x2y, 2xy2
(iv) a, 2b, 3c
Solution:
Volume of rectangle = length x breadth x height. To evaluate volume of rectangular boxes, multiply all the monomials.
(i) 5a x 3a2 x 7a4 = (5 × 3 × 7) (a × a2 × a4 ) = 105a7
(ii) 2p x 4q x 8r = (2 × 4 × 8 ) (p × q × r ) = 64pqr
(iii) y × 2x 2 y × 2xy 2 = (1 × 2 × 2) (x × x 2 × x × y × y × y 2 ) = 4x 4 y 4
(iv) a x 2b x 3c = (1 × 2 × 3 ) (a × b × c) = 6abc
5. Obtain the product of
(i) xy, yz, zx
(ii) a, - a 2 , a 3
(iii) 2, 4y, 8y2 , 16y3
(iv) a, 2b, 3c, 6abc
(v) m, – mn, mnp
Solution:
(i) xy × yz × zx = x2 y2 z2
(ii) a × - a 2 × a 3 = - a 6
(iii) 2 × 4y × 8y2 × 16y3 = 1024 y6
(iv) a × 2b × 3c × 6abc = 36a2 b2 c2
(v) m × – mn × mnp = –m 3 n 2 p
Post a Comment