Class 8 | NCERT Solution Maths Chapter 9 | Algebraic Expressions and Identities | Exercise 9.3
Exercise 9.3 Page No: 146
1. Carry out the multiplication of the expressions in each of the following pairs.
(i) 4p, q + r
(ii) ab, a - b
(iii) a + b, 7a²b²
(iv) a 2 - 9, 4a
(v) pq + qr + rp, 0
Solution:
(i)4p(q + r) = 4pq + 4pr
(ii) ab (a - b) = a 2 b - ab 2
(iii)(a + b) (7a 2 b 2 ) = 7a 3 b 2 + 7a 2 b 3
(iv) (a 2 - 9) (4a) = 4a 3 - 36a
(v) (pq + qr + rp) × 0 = 0 ( Anything multiplied by zero is zero )
2. Complete the table.
Solution:
First expression | Second expression | Product | |
(i) | a | b + c + d | a(b+c+d) = a×b + a×c + a×d From the ac * = |
(ii) | x + y - 5 | 5xy | 5 xy (x + y – 5) = 5 xy x x + 5 xy x y – 5 xy x 5 = 5 x2y + 5 xy2 – 25xy |
(iii) | p | 6p 2 – 7p + 5 | p (6 p 2-7 p +5) = p× 6 p2 – p× 7 p + p×5 = 6 p3 – 7 p2 + 5 p |
(iv) | 4 p2 q2 | P2 – q2 | 4p2 q2 * (p2 – q2 ) =4 p4 q2– 4p2 q4 |
(v) | a + b + c | abc | abc(a + b + c) = abc × a + abc × b + abc × c = a2bc + ab2c + abc2 |
3. Find the product.
i) a2 x (2a22) x (4a26)
ii) (2/3 xy) ×(-9/10 x2y2)
(iii) (-10/3 pq3/) × (6/5 p3q)
(iv) (x) × (x2) × (x3) × (x4)
Solution:
i) a2 x (2a22) x (4a26)
= (2 x 4) ( a 2 x a 22 x a 26 )
= 8 × a 2 + 22 + 26
= 8a50
ii) (2xy/3) ×(-9x2y2/10)
= (2/3 × -9/10) (x × x 2 × y × y 2 )
= (-3/5 x 3 y 3 )
iii) (-10pq3/3) ×(6p3q/5)
= ( -10/3 × 6/5 ) (p × p3× q3 × q)
= (-4p 4 q 4 )
iv) ( x) x (x2) x (x3) x (x4)
= x 1 + 2 + 3 + 4
= x10
4. (a) Simplify 3x (4x – 5) + 3 and find its values for (i) x = 3 (ii) x =1/2
(b) Simplify a (a2+ a + 1) + 5 and find its value for (i) a = 0, (ii) a = 1 (iii) a = – 1.
Solution:
a) 3x (4x - 5) + 3
=3x (4x) – 3x(5) +3
=12x2 – 15x + 3
(i) Putting x=3 in the equation we gets 12x2 – 15x + 3 =12(32) – 15 (3) +3
= 108 – 45 + 3
= 66
(ii) Putting x=1/2 in the equation we get
12x2 – 15x + 3 = 12 (1/2)2 – 15 (1/2) + 3
= 12 (1/4) – 15/2 +3
= 3 – 15/2 + 3
= 6- 15/2
= (12- 15 ) /2
= -3/2
b) a(a2 +a +1)+5
= a x a2 + a x a + a x 1 + 5 =a3+a2+a+ 5
(i) putting a=0 in the equation we get 03+02+0+5=5
(ii) putting a=1 in the equation we get 13 + 12 + 1+5 = 1 + 1 + 1+5 = 8
(iii) Putting a = -1 in the equation we get (-1)3+(-1)2 + (-1)+5 = -1 + 1 – 1+5 = 4
5. (a) Add: p ( p – q), q ( q – r) and r ( r – p)
(b) Add: 2x (z – x – y) and 2y (z – y – x)
(c) Subtract: 3l (l – 4 m + 5 n) from 4l ( 10 n – 3 m + 2 l )
(d) Subtract: 3a (a + b + c ) – 2 b (a – b + c) from 4c ( – a + b + c )
Solution:
a) p ( p – q) + q ( q – r) + r ( r – p)
= (p2 – pq) + (q2 – qr) + (r2 – pr)
= p2 + q2 + r2 – pq – qr – pr
b) 2x (z - x - y) + 2y (z - y - x)
= (2xz – 2x2 – 2xy) + (2yz – 2y2 – 2xy)
= 2xz – 4xy + 2yz – 2x2 – 2y2
c) 4l ( 10 n – 3 m + 2 l ) – 3l (l – 4 m + 5 n)
= (40ln – 12lm + 8l2) – (3l2 – 12lm + 15ln)
= 40ln – 12lm + 8l2 – 3l2 +12lm -15 ln
= 25 ln + 5l 2
d) 4c ( – a + b + c ) – (3a (a + b + c ) – 2 b (a – b + c))
= (-4ac + 4bc + 4c 2 ) – (3a 2 + 3ab + 3ac – ( 2ab – 2b 2 + 2bc))
=-4ac + 4bc + 4c 2 – (3a 2 + 3ab + 3ac – 2ab + 2b 2 – 2bc)
= -4ac + 4bc + 4c 2 – 3a 2 – 3ab – 3ac + 2ab – 2b 2 + 2bc
= -7ac + 6bc + 4c2 – 3a2 – ab – 2b2
Post a Comment