Class 8 | NCERT Solution Math Chapter 1 | Real Number | Exercise 1.2
NCERT Class 8 Maths Chapter 1 Rational Numbers Exercise 1.2
Exercise 1.2 Page: 20
1. Represent these numbers on the number line.
(i) 7/4
(ii) -5/6
Solution:
(i) 7/4
Divide the line between the whole numbers into 4 parts. i.e., divide the line between 0 and 1 to 4 parts, 1 and 2 to 4 parts and so on.
Thus, the rational number 7/4 lies at a distance of 7 points away from 0 towards positive number line.
(ii) -5/6
Divide the line between the integers into 4 parts. i.e., divide the line between 0 and -1 to 6 parts, -1 and -2 to 6 parts and so on. Here since the numerator is less than denominator, dividing 0 to – 1 into 6 part is sufficient.
Thus, the rational number -5/6 lies at a distance of 5 points, away from 0, towards negative number line
2. Represent -2/11, -5/11, -9/11 on a number line.
Solution:
Divide the line between the integers into 11 parts.
Thus, the rational numbers -2/11, -5/11, -9/11 lies at a distance of 2, 5, 9 points away from 0, towards negative number line respectively.
3. Write five rational numbers which are smaller than 2.
Solution:
The number 2 can be written as 20/10
Hence, we can say that, the five rational numbers which are smaller than 2 are:
2/10, 5/10, 10/10, 15/10, 19/10
4. Find the rational numbers between -2/5 and ½.
Solution:
Let us make the denominators same, say 50.
-2/5 = (-2 × 10)/(5 × 10) = -20/50
½ = (1 × 25)/(2 × 25) = 25/50
Ten rational numbers between -2/5 and ½ = ten rational numbers between -20/50 and 25/50
Therefore, ten rational numbers between -20/50 and 25/50 = -18/50, -15/50, -5/50, -2/50, 4/50, 5/50, 8/50, 12/50, 15/50, 20/50
5. Find five rational numbers between.
(i) 2/3 and 4/5
(ii) -3/2 and 5/3
(iii) ¼ and ½
Solution:
(i) 2/3 and 4/5
Let us make the denominators same, say 60
i.e., 2/3 and 4/5 can be written as:
2/3 = (2 × 20)/(3 × 20) = 40/60
4/5 = (4 × 12)/(5 × 12) = 48/60
Five rational numbers between 2/3 and 4/5 = five rational numbers between 40/60 and 48/60
Therefore, Five rational numbers between 40/60 and 48/60 = 41/60, 42/60, 43/60, 44/60, 45/60
(ii) -3/2 and 5/3
Let us make the denominators same, say 6
i.e., -3/2 and 5/3 can be written as:
-3/2 = (-3 × 3)/(2× 3) = -9/6
5/3 = (5 × 2)/(3 × 2) = 10/6
Five rational numbers between -3/2 and 5/3 = five rational numbers between -9/6 and 10/6
Therefore, Five rational numbers between -9/6 and 10/6 = -1/6, 2/6, 3/6, 4/6, 5/6
(iii) ¼ and ½
Let us make the denominators same, say 24.
i.e., ¼ and ½ can be written as:
¼ = (1 × 6)/(4 × 6) = 6/24
½ = (1 × 12)/(2 × 12) = 12/24
Five rational numbers between ¼ and ½ = five rational numbers between 6/24 and 12/24
Therefore, Five rational numbers between 6/24 and 12/24 = 7/24, 8/24, 9/24, 10/24, 11/24
6. Write five rational numbers greater than -2.
Solution:
-2 can be written as – 20/10
Hence, we can say that, the five rational numbers greater than -2 are
-10/10, -5/10, -1/10, 5/10, 7/10
7. Find ten rational numbers between 3/5 and ¾,
Solution:
Let us make the denominators same, say 80.
3/5 = (3 × 16)/(5× 16) = 48/80
3/4 = (3 × 20)/(4 × 20) = 60/80
Ten rational numbers between 3/5 and ¾ = ten rational numbers between 48/80 and 60/80
Therefore, ten rational numbers between 48/80 and 60/80 = 49/80, 50/80, 51/80, 52/80, 54/80, 55/80, 56/80, 57/80, 58/80, 59/80
Maths Class 8 NCERT Solutions Chapter 1 Exercises |
---|
NCERT Maths Solutions Class 8 Exercise 1.1 – 11 Questions (11 Short Answers) |
NCERT Maths Solutions Class 8 Exercise 1.2 – 7 Questions (7 Short Answers) |
For More Chapter
Class 8 Maths Ncert Solution |
---|
Chapter 1 Rational Number |
Chapter 2 Linear Equation in one variable |
Chapter 3 Understanding Quadrilaterals |
Chapter 4 Practical Geometry |
Chapter 5 Data Handling |
Chapter 6 Square and Square Roots |
Chapter 7 Cubes And Cube Roots |
Chapter 8 comparing Quantities |
Chapter 9 Algebraic Expressions and identities |
Chapter 10 Visualising Solid Shapes |
Chapter 11 Mensuration |
Chapter 12 Exponents And Power |
Chapter 13 Direct And Inverse Proportions |
Chapter 14 Factorisation |
Chapter 15 Introduction To Graphs |
Chapter 16 Playing With Numbers |
Post a Comment